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1. INTRODUCTION temperature Ti, whereas the lower bounding surface at z = 

THIS NOTE is concerned with thermal convection in a 
-d/2 is thermally insulating. The liquid to be considered is 

viscoelastic medium. The convective motion is generated by 
assumed to have a viscoelastic nature described by the 

internal heat sources which give a basic temperature gradient 
constitutive equation proposed by Oldroyd [ 14,151. 

varying with the vertical coordinate. This problem arises, in 
Following the usual steps of linear stability theory, the 

part, from the belief that thermal convection driven by internal 
equation governing small perturbations w’ (vertical com- 

heat sources plays an important role in the convective 
ponent of velocity) and T’ (temperature) can be written as 

processes in the earth’s mantle and is an important aspect of 
the post-accident heat removal problem that can result in the 1+&T 
event of a core meltdown in a nuclear power reactor. ( >( 

dt f V2w’-agV;T’ )=v(l+l,;)v4w., (1) 

Convection by internal heat sources has been studied in a 

(-- > 

dT 
several papers. Closely related to the present paper are the 
experimental studies [14] and the theoretical studies [59]. at 

h_V2 T’ = -_w’--, 
dz (2) 

For this problem the principle of the exchange of stabilities is where 
considered to be. valid, so the instability is manifested as a 
steady, cellular, convective motion, although it appears 
impossible at present to prove or disprove analytically the 

T= *i +g-$(r+d) (3) 

validity of this principle owing to the nonlinear temperature 
profile in the quiescent state due to internal heating. It is the temperature distribution in the initial quiescent state, I, 

is, however, expected that a layer of viscoelastic liquid is the stress relaxation time, 1, (<A,) is the strain retardation 

can become overstable due solely to internal heating as it time, G( is the coefficient of thermal expansion, g is the 

can do due solely to heating from below [l&12] or the gravitational acceleration, v is the kinematic viscosity, K is the 

dielectrophoretic forces [ 131 (caused by an electric field and a thermometric conductivity, 4 is the heat generated within 

gradient in dielectric constant). The purpose of the present the liquid per unit volume per unit time, k is the thermal 

research is to evaluate the conditions under which thermally conductivity and Vi!, = a21&?+a2/ay” is the horizontal 

induced overstability occurs in a viscoelastic liquid with Laplacian. Here, in addition to linearization, the usual 

internal heat generation. Boussinesq approximation has been made. The associated 
boundary conditions are given by 

2. FORMULATION WI = ad/a2 = T' = 0 at z = d/2 

We consider an infinite horizontal layer of a viscoelastic 
WI = adlaz = aTlaz = 0 at z = -d/2. I 

(4) 

liquid of depth d which is heated internally by a uniform Equations (1) and (2) and the boundary conditions (4) are first 
distribution of heat sources. The upper bounding surface at rendered dimensionless by choosing d, d’/tc, tc/d and w/agd3 as 
z = d/2 is perfectly conducting and maintained at a constant the units oflength, time, velocity and temperature respectively, 

NOMENCLATURE 

a wavenumber 
B(k, n), C(k, n) particular solution vector 
d depth of the layer 
D d/dr 
9 gravitational acceleration 
H,, . . , H, power series method constants 
k thermal conductivity 
P Prandtl number, V/K 

4 heat generated within the liquid per unit 
volume per unit time 

R, internal Rayleigh number, agqd’/kvu 
T temperature 
W vertical component of velocity 
W functional dependence of w on z 
x, y horizontal coordinates 
Z vertical coordinate. 

Greek symbols 
a coefficient of thermal expansion 

r elastic parameter, ,&u/d’ 
e functional dependence of T on z 
K thermometric conductivity 
11 stress relaxation time 
12 strain retardation time 
p &IA 
V kinematic viscosity 
* time constant 
w frequency. 

Subscript 
C critical condition 

Superscript 
0 oscillatory 
S stationary 

perturbed quantity 
mean quantity. 
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and are then simplified in the usual manner by decomposing 
the solution in terms of normal modes, so that 

[w’, T’] = [W(z), @(z)] exp [ut +i(a,x + a@] (5) 

where u is the (complex) time constant, and a, and aY are the 
(real) wavenumbers. Thus, with all variables now dimension- 
less, we arrive at 

(i+yu)[P-‘u(D*-aZ)W+a2B] = (~+I’/.w)(D~-~~)~B’, 
(6) 

(D2-a’-(r)B = --R,(z+~)W, (7) 

W=DW=B=O at z=f 

W=DW=DB=O at 1 z=--) 
(8) 

where P = V/K is the Prandtl number, F = A,rc/d’ is an elastic 
parameter which may be interpreted as a Fourier number in 
terms of A,, n = &/A, is the ratio of the strain retardation time 
to the stress relaxation time, it, = agqds/kv~ is the internal 
Rayleigh number, D = d/dz and a2 = a: + u:. 

Equations (6) and (7) and the boundary conditions (8) 
constitute an eigenvalue system for the present problem. It is 
evident that when p = 0 the system reduces to that for a 
Maxwell liquid [ll]. It is also evident that when F = 0 or /J 
= 1 the system reduces to that for an ordinary viscous liquid. 

3. SOLUTION 

Applying the power series method, the solution ofequations 
(6) and (7) can be expressed as 

W= 5 If, 2 B(k,n)+‘, 

where H,,..., H, are arbitrary constants. The series 
coefficients B(k, n) and C(k, n) are found from equations (6) and 
(7) to obey the following recursion relationship : 

B(k,n) = S,,, for k c 4, (11) 

1 
B(k, n) = 

(k-l)(k-Z)(k-3)k-4) 

x {[(2+r~u)a~+P-‘a(l+ru)] 

X (k-3)(k-4)B(k-2,n)-a’[(1 +Fnu)a2 

+P-‘u(l+r~)]B(k-4,n)+(l~ru)~‘C(k-4,n)~, 

for k > 4, WI 

C(k,n) = 6,,._,, for k < 2, (13) 

1 
C&,4 = (k_l)(k_2) (a2+W(k-Zn) 

for k > 2, (14) 

where 6, j is the Kronecker delta and B(0, n) = 0. 
Imposing the boundary conditions (3) leads to a set of six 

homogeneous algebraic equations for six unknown constants 
H 1,. . , , He The requirement that the determinant of the 
coefficientsofH,, . . , H,must vanishin order toensure anon- 
trivial solution determines an eigenvalue equation. 

4. NUMERICAL RESULTS 
AND DISCUSSION 

IfwefixthevaluesP,Fandp, theeigenvalueequationgivesa 
relation among R,, a and 6. Since the neutral state for a 
stationary instability is characterized by (r = 0, the eigenvalue 
equation starts to give a relation between R, and a which 

enables us to plot R, against a. The lowest point of R, as a 
function of a gives the critical internal Rayleigh number Rf_ 
and the critical wavenumber of. On the other hand, since. the 
neutral state for an oscillatory instability is characterized by 
G = io with w real, the eigenvalue equation becomes to give 
a relation among R,, a, and w. The lowest point of RI as a 
function of a gives the critical internal Rayleigh number RP,, 
the critical wavenumber a: and the corresponding critical 
frequency 0,. Here the superscripts ‘s’ and ‘0’ stand for 
‘stationary’ and ‘oscillatory’, respectively. The type of 
instability which takes place in practice will be that 
~orrespon~ng to the lower value of RIG. It should be noted here 
that as far as a stationary instability is concerned there is no 
distinction between an ordinary viscous liquid and a 
viscoelastic liquid. For a stationary instability Rfc and 4 have 
respectively the values of 2772.27 and 2.629, which are 
identical to the values found by Roberts [63 and Tveitereid and 
Palm [S]. 

ThevaluesofR~=,u~and#~forP = 1~areshowninFigs. l- 
3, respectively, as functions of F for various values of JL Here 
the choice of P = 100 is based on the data given by Toms 
and Strawbridge [16] for dilute solution of polymethyl 
methacrylate in n-butyl acetate. It should be noted that when 
P > 100 the results are almost the same as those for P = 100 
and the value of P is quite high for most viscoelastic liquids. 
The values of Rtc and a, for a stationary instability is also 
superimposed in Figs. 1 and 2, respectively, by a broken line. It 
is seen from Fig. 1 that when the elastic parameter I is smaller 
than a certain value, which depends on p, the principle of the 

l*t I 

f 
FIG. 1. The critical internal Rayleigh number R,c as a function 
of I’ for various values of n when P = 100. - oscillatory ; 

----stationary. 

0.1 1 

r 

FIG. 2. The critical wavenumber a, as a function of F for 
various values of P when P = 100. - oscillatory; ---- 
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r 
FIG. 3. The critical frequency o, as a function of r for various 

values of p when P = 100. 

exchange of stabilities does not hold, that is, instability 
manifests itself as overstability. In order that instability 
manifests itself as overstability, the value of r must be greater 
than about 0.05 for p = 0.1. This, recalling that I- = &K/d’, 
means that the thickness d of the liquid layer must be smaller 
than about 0.5 mm since for most viscoelastic liquids I, is at 
most 0.1 s [ll, 163 and K is about 0.001 cm s-l [lo, 111. It 
therefore appears that an experimental investigation under 
normal laboratory conditions is not feasible. In this regard, 
however, it sliould be noted that aqueous solutions of certain 
recently developed polymers have relatively large relaxation 
times and rather low viscosities. Perhaps further development 
of such polymers will make oscillatory convection of more 
practical concern. It is also seen from Fig. 1 that the critical 
internal Rayleigh number R,0 for the onset of overstability 
decreases with increase of r and increases with /.I. Hence we 
may say that the elasticity of a viscoelastic liquid has a 
destabilizing influence on a liquid layer heated internally. It 
should finally be noted that the results in this note are 
qualitatively very similar to those in ref. [12] for the classical 
Btnard problem and in ref. [ 131 for the electrohydrodynamic 
instability. 

Acknowledgements-The author wishes to express his cordial 
thanks to Dr M. Takashima for helpful discussions and con- 
tinuous encouragement throughout this work. 

hr. J. Hear Mass Transfer. Vol. 29, No. 4, pp. 647-651, 1986 0017-9310/86 $3.00+0.00 
Printed in Great Britain 0 1986 Pergamon Press Ltd. 

1. 

2. 

3. 

4. 

5. 

6. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

REFERENCES 

D. J. Tritton and M. N. Zarraga, Convection in horizontal 
layer with internal heat generation. Experiments, J. Fluid 
Mech. 30,21-31(1967). 
E. W. Schwiderski and H. J. A. Schwab, Convection 
experiments with electrically heated fluid layers, J. Fluid 
Mech. 48,703-719 (1971). 
F. A. Kulacki and M. E. Nagle, Natural convection in a 
horizontal fluid layer with volumetric energy sources, 
Trans. Am. Sot. mech. Engrs, series C, J. Heat Transfm 97, 
20&211 (1975). 
F. A. Kulacki and A. A. Emara, Steady and transient 
thermal convection in a fluid layer with uniform 
volumetric energy sources, J. Fluid Mech. 83, 375-395 
(1977). 
E. M. Sparrow, R. J. Goldstein and V. K. Jonsson, 
Thermal instability in a horizontal fluid layer : effect of, 
boundary conditions and non-linear temperature profile, 
J. Fluid Mech. 18, 513-528 (1964). 
P. H. Roberts, Convection in horizontal layers with 
internal heat generation. Theory, J. Fluid Me& 30,3349 
(1967). 
R. Thirlby, Convection in an internally heated layer, J. 
Fluid Mech. 44, 673-693 (1970). 
M. Tveitereid and E. Palm, Convection due to internal 
heat sources, J. Fluid Mech. 76,481&499 (1976). 
M. Tveitereid, Thermal convection in a horizontal porous 
layer with internal heat sources, ht. J. Heat Mass 
Transfer 20, 104>1050 (1977). 
T. Gieen, Oscillating convection in an elasticoviscous 
liauid. Phvs. Fluids 11.1410-1412 (1968). 
C:M. iesi and V. S. Arbaci, Overstabilit; of a viscoelastic 
fluid layer heated from below, J. Fluid Mech. 36,613-623 
(1969). 
M. Takashima, Thermal instability in a viscoelastic fluid 
layer. I, J. Phys. Sot. Japan 33,511-518 (1972). 
M. Takashima and A. K. Ghosh, Electrohydrodynamic 
instability in a viscoelastic liquid layer, J. Phys. Sot. Japan 
47,1717-1722 (1979). 
J. G. Oldroyd, On the formulation of rheological 
equations of state, Proc. R. Sot. AZOO, 523-541 (1950). 
J. G. Oldroyd, Non-Newtonian effects in steady motion of 
some idealized elastico-viscous liquids, Proc. R. Sot. 
A245,278-297 (1958). 
B. A. Toms and D. J. Strawbridge, Elastic and viscous 
properties of dilute solutions of pilymethyl methacrylate 
in organic liquids, Trans. Faraday Sot. 49, 1225-1232 
(1953). 

Evaluation of the importance of the relative velocity during evaporation of 
drops in sprays 

J. BELLAN and K. HARSTAD 

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A. 

(Received 21 May 1985 and in final form 11 October 1985) 

1. INTRODUCTION an entity, and the ambience. Secondly, it changes the geometry 
of the spray by entrainment of the spray periphery and 

EVAPORATION and combustion of liquid sprays in power recirculation of the gases surrounding the spray. These 
systems invariably occurs in environments where there is a processes are all very complex and difficult to model. For this 
convective flow past the spray. This convective flow influences reason, guidance was sought initially from the study of 
evaporation and combustion in at least two ways. First, it individual drop evaporation and combustion. These studies 
changes the heat and mass transfer rates between the spray as [l-6] concurred with the experimental observation that a 


